
Convergence of the groups posterior distribution
in latent or stochastic block models

by

Mahendra Mariadassou, Catherine Matias

Research Report No. 38
June 2012

Statistics for Systems Biology Group
Jouy-en-Josas/Paris/Evry, France

http://www.ssbgroup.fr

http://www.ssbgroup.fr


Convergence of the groups posterior distribution in latent or

stochastic block models

Mahendra Mariadassou1 and Catherine Matias2

July 23, 2012
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Abstract

We propose a unified framework for studying both latent and stochastic block mod-
els, which are used to cluster simultaneously rows and columns of a data matrix. In
this new framework, we study the behaviour of the groups posterior distribution, given
the data. We characterize whether it is possible to asymptotically recover the actual
groups on the rows and columns of the matrix. In other words, we establish sufficient
conditions for the groups posterior distribution to converge (as the size of the data
increases) to a Dirac mass located at the actual (random) groups configuration. In
particular, we highlight some cases where the model assumes symmetries in the matrix
of connection probabilities that prevents from a correct recovering of the groups. We
also discuss the validity of these results when the proportion of non-null entries in the
data matrix converges to zero.

Keywords and phrases: Block clustering, block modelling, latent block model, posterior distribu-

tion, stochastic block model.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas including pattern recog-
nition, microarrays analysis, document classification and more generally data mining. In
these contexts, one is interested in data recorded in a table or matrix, where for instance
rows index objects and columns index features or variables. While the majority of clustering
procedures aim at clustering either the objects or the variables, we focus here on procedures
which consider the two sets simultaneously and organize the data into homogeneous blocks.
More precisely, we are interested in probabilistic models called latent block models (LBMs),
where both rows and columns are partitioned into latent groups (Govaert and Nadif, 2003).

Stochastic block models (SBMs, Holland et al., 1983) may be viewed as a particular case
of LBMs where data consists in a random graph which is encoded in its adjacency matrix.

1



An adjacency matrix is a square matrix where rows and columns are indexed by the same
set of objects and an entry in the matrix describes the relation between two objects. For
instance, binary random graphs are described by a binary matrix where entry (i, j) equals 1
if and only if there is an edge between nodes (i, j) in the graph. Similarly, weighted random
graphs are encoded in square matrices where the entries describe the edges weights (the
weight being 0 in case of no edge between the two nodes). In this context the partitions on
rows and columns of the square matrix are further constrained to be identical.

To our knowledge and despite their similarities, LBMs and SBMs have never been ex-
plored from the same point of view. We aim at presenting a unified framework for studying
both LBMs and SBMs. We are more precisely interested in the behaviour of the groups
posterior distribution, given the data. Our goal is to characterize whether it is possible to
asymptotically recover the actual groups on the rows and columns of the matrix. In other
words, we establish sufficient conditions for the groups posterior distribution to converge
(as the size of the data increases) to a Dirac mass located at the actual (random) groups
configuration. In particular, we highlight some cases where the model assumes symmetries
in the matrix of connection probabilities that prevents from a correct recovering of the
groups (see Theorem 1 and following corollaries). Note that the asymptotic framework is
particularly suited in this context as the datasets are often huge.

One of the first occurrences of LBMs appears in the pioneering work of Hartigan (1972)
under the name three partitions. LBMs were later developed as an intuitive extension of
the finite mixture model, to allow for simultaneous clustering of objects and features. Many
different names are used in the literature for such procedures, among which we mention
block clustering, block modelling, biclustering, co-clustering and two-mode clustering. All
of these procedures differ through the type of clusters they consider. LBMs induce a specific
clustering on the data matrix, namely we partition the rows and columns of the data matrix
and the data clusters are restricted to cartesian products of a row cluster and a column clus-
ter. Frequentist parameter estimation procedures for LBMs have been proposed in Govaert
and Nadif (2003, 2008) for binary data and Govaert and Nadif (2010) for Poisson random
variables. A Bayesian version of the model has been introduced in DeSarbo et al. (2004) for
random variables belonging to the set [0, 1], combined with a Markov chain Monte Carlo
(MCMC) procedure to estimate the model parameters. Moreover, model selection in a
Bayesian setting is performed at the same time as parameter estimation in Wyse and Friel
(2012), who consider two different types of models: a Bernoulli LBM for binary data and
a Gaussian one for continuous observations. All of these parameter estimation procedures
also provide a clustering of the data, based on the groups posterior distribution (at the
estimated parameter value). To our knowledge, there is no result in the literature about
the quality of such clustering procedures nor about convergence of the groups posterior
distribution in LBMs.

SBMs were (re)-discovered many different times in the literature, and introduced at
first in social sciences to study relational data (see for instance Frank and Harary, 1982;
Holland et al., 1983; Snijders and Nowicki, 1997; Daudin et al., 2008). In this context, the
data consists in a random graph over a set of nodes, or equivalently in a square matrix
(the adjacency matrix) whose entries characterize the relation between two nodes. The
nodes are partitioned into latent groups so that the clustering of the rows and columns of
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the matrix is now constrained to be identical. Various parameter estimation procedures
have been proposed in this context, from Bayesian strategies (Snijders and Nowicki, 1997;
Nowicki and Snijders, 2001), to variational approximations of expectation maximization
(EM) algorithm (Daudin et al., 2008; Mariadassou et al., 2010; Picard et al., 2009) or
variational Bayes approaches (Latouche et al., 2012), online procedures (Zanghi et al.,
2008, 2010) and direct methods (Ambroise and Matias, 2011). Note that most of these
works are concerned with binary data and only some of the most recent of them deal with
weighted random graphs (Ambroise and Matias, 2011; Mariadassou et al., 2010).

In each of these procedures, a clustering of the graph nodes is performed according to
the groups posterior distribution (at the estimated parameter value). The behaviour of this
posterior distribution for binary SBMs is studied in Celisse et al. (2011). These authors
establish two different results. The first one (Theorem 3.1 in Celisse et al., 2011) states
that at the true parameter value, the groups posterior distribution converges to a Dirac
mass at the actual value of groups configuration (controlling also the corresponding rate
of convergence). This result is valid only at the true parameter value, while the above
mentioned procedures rely on the groups posterior distribution at an estimated value of
the parameter instead of the true one. Note also that this result establishes a convergence
under the conditional distribution of the data, given the actual configuration on the groups.
However, as this convergence is uniform with respect to the actual configuration, the result
also holds under the unconditional distribution of the observations. The second result they
obtain on the convergence of the groups posterior distribution (Proposition 3.8 in Celisse
et al., 2011) is valid at an estimated parameter value, provided this estimator converges at
rate at least n−1 to the true value, where n is the number of nodes in the graph (number
of rows and columns in the square data matrix). Note that this latter assumption is not
harmless as it is not established that such an estimator exists, except in a particular setting
(Ambroise and Matias, 2011); see also Gazal et al. (2011) for empirical results. There are
thus many differences between our result (Theorem 1 and following corollaries) and theirs:
we provide a result for any parameter value in the neighborhood of the true value, we work
with non-necessarily binary data and our work encompasses both SBMs and LBMs. We
however mention that the main goal of these authors is different from ours and consists in
establishing the consistency of maximum likelihood and variational estimators in SBMs.

Next, to conclude with the literature concerning SBMs, we shall mention the works of
Bickel and Chen (2009); Choi et al. (2012) and Rohe et al. (2011) on the performances
of clustering procedures in random graphs. Those articles, which are of a different nature
from ours, establish that under some conditions, the fraction of misclassified nodes (resulting
from different algorithmic procedures) converges to zero as the number of nodes increases.
These results only concern the case of binary graphs, while we shall deal both with binary
and weighted graphs; as well as LBMs. Moreover, the works by Bickel and Chen (2009) and
Rohe et al. (2011) are not based on a probabilistic model and only deal with community
detection, that is to say finding a set of highly connected nodes, this task being more
restrictive than block modeling. We also mention that Choi et al. (2012) and Rohe et al.
(2011) both are concerned with an asymptotic setting where the number of groups is allowed
to grow as the root of the network size and the average network degree grows at least
nearly linearly (Rohe et al., 2011) or poly-logarithmically (Choi et al., 2012) in this size. In
Section 5 of the present work, we explore the validity of our results in a similar framework,
by assuming that the numbers of groups remain fixed while the connections probabilities
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between groups converge to zero. Finally and most importantly, note that Choi et al.
(2012) proposes convergence results in a setup of independent Bernoulli random variables
(viewing the latent groups as parameters instead of random variables), while in our context,
the observed random variables are not independent.

We also want to outline that many different generalizations allowing for overlapping
groups exist, both for LBMs and SBMs. We refer the interested reader to the works of
DeSarbo et al. (2004) for LBMs and Airoldi et al. (2008); Latouche et al. (2011) in the case
of SBMs, as well as the references therein. However in this work, we restrict our attention
to non overlapping groups.

This work is organized as follows. Section 2 describes LBMs and SBMs and introduces
some important concepts such as equivalent group configurations. Section 3 establishes
general and sufficient conditions for the groups posterior probability to converge (with large
probability) to a (mixture of) Dirac mass, located at (the set of configurations equivalent
to) the actual random configuration. In particular, we discuss the cases where it is likely
that groups estimation relying on maximum posterior probabilities might not converge.
Section 4 illustrates our main result, providing a large number of examples where the above
mentioned conditions are satisfied. Finally, in Section 5 we explore the validity of our results
when the connections probabilities between groups converge to zero. This corresponds to
datasets with an asymptotically decreasing density of connections. Some technical proofs
are postponed to Appendix A.

2 Model and notation

2.1 Model and assumptions

We observe a matrix Xn,m := {Xij}1≤i≤n,1≤j≤m of random variables in some space set
X , whose distribution is specified through latent groups on the rows and columns of the
matrix.

Let Q ≥ 1 and L ≥ 1 denote the number of latent groups respectively on the rows
and columns of the matrix. Consider the probability distributions α = (α1, . . . , αQ) on
Q = {1, . . . , Q} and β = (β1, . . . , βL) on L = {1, . . . , L}, such that

∀q ∈ Q, ∀l ∈ L, αq, βl > 0 and

Q∑
q=1

αq = 1,
L∑
l=1

βl = 1.

Let Zn := Z1, . . . , Zn be independent and identically distributed (i.i.d.) random variables,
with distribution α on Q and Wm := W1, . . . ,Wm i.i.d. random variables with distribution
β on L. Two different cases will be considered in this work:

Latent block model (LBM). In this case, the random variables {Zi}1≤i≤n and {Wj}1≤j≤m
are independent. We let I = {1, . . . , n} × {1, . . . ,m} and µ = α⊗n ⊗ β⊗m the distri-
bution of (Zn,Wm) := (Z1, . . . , Zn,W1, . . . ,Wm) and set Uij = (Zi,Wj) for (i, j) in
I. The random vector (Zn,Wm) takes values in the set U := Qn × Lm whereas the
{Uij := (Zi,Wj)}(i,j)∈I are non-indepedent random variables taking values in the set
(Q×L)nm.
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Stochastic block model (SBM). In this case we have n = m,Q = L, Zi = Wi for all
1 ≤ i ≤ n and α = β. We let I = {1, . . . , n}2, µ = α⊗n the distribution of Zn and
set Uij = (Zi, Zj) for (i, j) ∈ I. The random variables {Uij := (Zi, Zj)}(i,j)∈I are not
independent and take values in the set

U = {{(qi, qj)}(i,j)∈I ;∀i ∈ {1, . . . , n}, qi ∈ Q}.

This case corresponds to the observation of a random graph whose adjacency matrix
is given by {Xij}1≤i,j≤n. As particular cases, we may also consider graphs with no
self-loops in which case I = {1, . . . , n}2 r {(i, i); 1 ≤ i ≤ n}. We may also consider
undirected random graphs, possibly with no self-loops, by imposing symmetric adja-
cency matrices Xij = Xji. In this latter case, I = {1 ≤ i < j ≤ n}. In the following,
some formulas are given in full generality, and one should take βl = 1 for any l to
obtain corresponding expressions in SBM.

We introduce a matrix of connectivity parameters π = (πql)(q,l)∈Q×L belonging to some
set of matrices ΠQL whose coordinates πql belong to some set Π (note that ΠQL may
be different from the product set ΠQL). Now, conditional on the latent variables {Uij =
(Zi,Wj)}(i,j)∈I , the random variables {Xij}(i,j)∈I are assumed to be independent, with a
parametric distribution on each entry depending on the corresponding rows and columns
groups. More precisely, conditional on Zi = q and Wj = l, the random variable Xij follows
a distribution parameterized by πql. We let f(·;πql) denote its density with respect to some
underlying measure (either the counting or Lebesgue measure).

The model may be summarized as follows:

· (Zn,Wm) latent random variables in U with distribution given by µ,
· Xn,m = {Xij}(i,j)∈I observations in X ,
· P(Xn,m|Zn,Wm) = ⊗(i,j)∈I P(Xij |Zi,Wj),

· ∀(i, j) ∈ I and ∀(q, l) ∈ Q× L, we have Xij |(Zi,Wj) = (q, l) ∼ f(·;πql).

(1)

We consider the following parameter set

Θ =
{
θ = (µ,π);π ∈ ΠQL and ∀(q, l) ∈ Q× L, αq ≥ αmin > 0, βl ≥ βmin > 0

}
,

and define αmax = max{αq; q ∈ Q; θ = (µ,π) ∈ Θ} and similarly βmax = max{βl; l ∈ L; θ =
(µ,π) ∈ Θ}. We let µmin := αmin ∧ βmin and µmax := αmax ∨ βmax. We denote by Pθ and
Eθ the probability distribution and expectation under parameter θ. In the following, we
assume that the observations Xn,m are drawn under the true parameter value θ? ∈ Θ. We
let P? and E? respectively denote probability and expectation under parameter value θ?.
We now introduce a necessary condition for the connectivity parameters to be identifiable
from Pθ.

Assumption 1. i) The parameter π ∈ Π is identifiable from the distribution f(·;π),
namely f(·;π) = f(·;π′)⇒ π = π′,

ii) For all q 6= q′ ∈ Q, there exists some l ∈ L such that πql 6= πq′l. Similarly, for all
l 6= l′ ∈ L, there exists some q ∈ Q such that πql 6= πql′.
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Assumption 1 will be in force throughout this work. Note that it is a very natural
assumption. In particular, i) will be satisfied by any reasonable family of distributions and
if ii) is not satisfied, there exist for instance two row groups q 6= q′ with the same behavior.
These groups (and thus the corresponding parameters) may then not be distinguished
relying on the marginal distribution of Pθ on the observation space XN. Note also that
Assumption 1 is in general not sufficient to ensure identifiability of the parameters in LBM
or SBM. Identifiability results for SBM have first been given in a particular case in Allman
et al. (2009) and then later more thoroughly discussed in Allman et al. (2011) for undirected,
binary or weighted random graphs. See also Celisse et al. (2011) for the case of directed
and binary random graphs.

In the following, for any subset A we denote by either 1A or 1{A} the indicator function
of event A, by |A| its cardinality and by Ā the complementary subset (in the ambient set).

2.2 Equivalent configurations

We introduce a concept that will enable us to deal with possible symmetries in the pa-
rameter matrices π. For instance, the affiliation model (Frank and Harary, 1982; Am-
broise and Matias, 2011) is a particular case of SBM where the parameter matrix π writes
π = (λ − ν)IQ + ν1ᵀ

Q1Q, with IQ the Q × Q identity matrix and 1Q the Q-length vector
of 1s. In other words, the model (that is motivated by parsimony) is characterized by only
two different types of connections: inner-group connections all happen with the same prob-
ability λ, whereas outer-group connections happen with probability ν. In this case, for any
permutation s of Q, the permuted matrix (πs(q)s(l))1≤q,l≤Q is equal to the original π. As a
consequence, we have

Xn,n |Zn
d
= Xn,n | s(Zn), under parameter value π,

where =d means equality in distribution and s(Zn) := (s(Z1), . . . , s(Zn)). Thus, a posteriori
estimation of the groups distinguishes the different configurations {s(Zn), s ∈ SQ} (where
we let SQ be the set of permutations of Q), if and only if they happen to have different
probabilities of occurrences. In this latter case, a posteriori estimation will select among
the set {s(Zn), s ∈ SQ} the configuration whose prior probability is higher.

More generally for LBMs or SBMs, the quality of a posteriori estimation of the row and
column groups depends on whether there exist some permutations (apart from the trivial
identity permutation) that leave the parameter matrix π invariant. If this is the case, then
for instance a model with equal group proportions will recover with equal probability any
of the configurations obtained by permuting the actual one. It should be stressed that this
phenomenon is different from the classical label switching issue that arises in finite mixture
models. LBMs and SBMs also experience the label switching issue: any permutations on
the labels of the rows and columns groups will induce the same distribution on the data
matrix but with rows and columns of π permuted accordingly. Here, we rather point out
the fact that for some constrained models, there might exist permutations on the rows and
columns groups that leave the connectivity parameter π invariant. As a consequence, when
comparing the actual group configuration and its permuted version, a posteriori distribu-
tion does not rely on the data anymore. Indeed, the difference between those posterior
probabilities is equal to the difference between their prior probabilities.
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We let SQ and SL be the sets of permutations of Q and L respectively. For any
(s, t) ∈ SQ ×SL, we let

πs,t := (πs,tql )(q,l)∈Q×L := (πs(q)t(l))(q,l)∈Q×L.

Fix a subgroup S of SQ × SL and a parameter set ΠQL. Whenever for any pair of
permutations (s, t) ∈ S and any parameter π ∈ ΠQL we have πs,t = π, we say that the
parameter set ΠQL is invariant under the action of S. In the following, we will consider
parameter sets that are invariant under some subgroup S of SQ ×SL. This includes the
case where S is reduced to identity pair and the parameter set is the unconstrained product
set ΠQL. We will moreover exclude from the parameter set ΠQL any point π admitting
specific symmetries, namely such that there exists some pair (s, t) ∈ (SQ×SL)\S satisfying
πs,t = π. Note that this corresponds to excluding a subset of null Lebesgue measure from
the parameter set ΠQL.

Assumption 2. The parameter set ΠQL is invariant under the action of some (maximal)
subgroup S of SQ × SL. Moreover, for any pair of permutations (s, t) ∈ (SQ × SL) \ S
and any parameter π ∈ ΠQL, we assume that πs,t 6= π.

Example 1. In SBM, we consider S = {(Id, Id)} and let

ΠQL = {π ∈ ΠQ2
;∀(s, t) ∈ SQ ×SL, (s, t) 6= (Id, Id), we have πs,t 6= π}.

Example 2. In SBM, we consider S = {(s, s); s ∈ SQ} and let ΠQL = {(λ − ν)IQ +
ν1ᵀ

Q1Q;λ, ν ∈ (0, 1), λ 6= ν}.

Whenever S is not reduced to the identity singleton pair, each parameter value π ∈ ΠQL
induces many different equivalent configurations. More precisely, for any (s, t) ∈ S and any
π ∈ ΠQL, we have

Xn,m | {Zn,Wm}
d
= Xn,m | {s(Zn), t(Wm)}, under parameter value π,

which means that the difference between the posterior distributions Pθ({Zn,Wm}|Xn,m)−
Pθ({s(Zn), t(Wm)}|Xn,m) does not depend on the data Xn,m.

Remark 1. As already said, in SBM with affiliation structure, the group of permutations
(s, s) with s ∈ SQ leaves the parameter set ΠQL invariant. For more general models, let us
consider (s, t) = ([q, q′], [l, l′]) ∈ SQ ×SL where [q, q′] is the transposition of q and q′ in Q
and [l, l′] is the transposition of l and l′ in L. Then any π ∈ ΠQL satisfies

∀i ∈ Q \ {q, q′}, πil = πil′ ,

∀j ∈ L \ {l, l′}, πqj = πq′j ,

πql = πq′l′ and πq′l = πql′ .

In particular, for Assumption 1 to be satisfied while ([q, q′], [l, l′]) belongs to S that leaves
ΠQL invariant, it is necessary that both πql 6= πql′ and πq′l 6= πq′l′.

Note that the parameter sets ΠQL that we consider are then in a one-to-one correspon-
dence with the subgroups S of SQ × SL. Note also that we have |S| ≤ Q!L! in general
and |S| ≤ Q! in the particular SBM.

We now define equivalent configurations in U .
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Definition 1. Consider a parameter set ΠQL invariant under the action of some sub-
group S of SQ ×SL and fix a parameter value π ∈ ΠQL. Any two groups configurations
(zn,wm) := (z1, . . . , zn, w1, . . . , wm) and (z′n,w

′
m) := (z′1, . . . , z

′
n, w

′
1, . . . , w

′
m) in U are

called equivalent (a relation denoted by (zn,wm) ∼ (z′n,w
′
m)) if and only if there exists

(s, t) ∈ S such that

(s(z′n), t(w′m)) := (s(z′1), . . . , s(z′n), t(w′1), . . . , t(w′m)) = (zn,wm).

We let Ũ denote the quotient of U by this equivalence relation. Note in particular that if
(zn,wm) ∼ (z′n,w

′
m) then for any π ∈ ΠQL, we have (πziwj )(i,j)∈I = (πz′iw′

j
)(i,j)∈I .

For any vector u = (u1, . . . , up) ∈ Rp, we let ‖u‖0 :=
∑p

i=1 1{ui 6= 0}. The distance
between two different configurations (zn,wm) ∈ Ũ and (z′n,w

′
m) ∈ Ũ is measured via the

minimum ‖ · ‖0 distance between any two representatives of these classes. We thus let

d((zn,wm), (z′n,w
′
m)) := min{‖zn − s(z′n)‖0 + ‖wm − t(w′m)‖0; (s, t) ∈ S}. (2)

Note that this distance is well-defined on the space Ũ . Note also that when S is reduced
to the identity pair, the distance d(, ) is an ordinary `0 distance.

2.3 Most likely configurations

Among the set of all (up to equivalence) configurations Ũ , we shall distinguish some which
are well-behaved in the following sense. For any groups q ∈ Q and l ∈ L, consider the
events

Aq =
{
ω ∈ Ω;Nq(Zn(ω)) :=

n∑
i=1

1{Zi(ω) = q} < nµmin/2
}
,

and Bl =
{
ω ∈ Ω;Nl(Wm(ω)) :=

m∑
j=1

1{Wj(ω) = l} < mµmin/2
}
.

Since Nq(Zn) and Nl(Wm) are sums of i.i.d Bernoulli random variables with respective
parameters α?q and β?l , satisfying α?q ∧ β?l ≥ µmin, a standard Hoeffding’s Inequality gives

P?(Aq ∪Bl) ≤ exp[−n(α?q)
2/2] + exp[−m(β?l )2/2] ≤ 2 exp[−(n ∧m)µ2

min/2].

Taking an union bound, we obtain P?(∪(q,l)∈Q×L(Aq ∪ Bl)) ≤ 2QL exp[−(n ∧ m)µ2
min/2].

Now, consider the event Ω0 defined by

Ω0 := {ω ∈ Ω; ∀(q, l) ∈ Q× L, Nq(Zn(ω)) ≥ nµmin/2 and Nl(Wm(ω)) ≥ mµmin/2}
= ∩(q,l)∈Q×L(Āq ∩ B̄l), (3)

which has P?-probability larger than 1− 2QL exp[−(n ∧m)µ2
min/2] and its counterpart U0

defined by

U0 = {(zn,wm) ∈ U ; ∀(q, l) ∈ Q× L, Nq(zn) ≥ nµmin/2 and Nl(wm) ≥ mµmin/2}, (4)

where Nq(zn) :=
∑n

i=1 1{zi = q} and Nl(wm) is defined similarly. We extend this notation
up to equivalent configurations, by letting Ũ0 be the set of configurations (zn,wm) ∈ Ũ
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such that at least one (and then in fact all) representative in the class belongs to U0.
Note that neither Nq(zn) nor Nl(wm) are properly defined on Ũ , as these quantities may
take different values for equivalent configurations. However, as soon as one representative
(zn,wm) belongs to U0, we both get Nq(z

′
n) ≥ nµmin/2 and Nl(w

′
m) ≥ mµmin/2 for any

(z′n,w
′
m) ∼ (zn,wm). In the following, some properties will only be valid on the set of

configurations Ũ0.

3 Groups posterior distribution

3.1 The groups posterior distribution

We provide a preliminary lemma on the expression of the groups posterior distribution.

Lemma 1. For any n,m ≥ 1 and any θ ∈ Θ, the groups posterior distribution writes for
any (zn,wm) ∈ U ,

pθn,m(zn,wm) := Pθ((Zn,Wm) = (zn,wm)|Xn,m)

∝
( ∏

(i,j)∈I

f(Xij ;πziwj )
)( n∏

i=1

αzi

)( m∏
j=1

βwj

)
, (5)

where ∝ means equality up to a normalizing constant and where we let βl = 1 in SBM.

The proof of this lemma is straightforward and therefore omitted.
In the following, we will consider the main term in the log ratio log pθn,m(z?n,w

?
m) −

log pθn,m(zn,wm) for two different configurations (z?n,w
?
m), (zn,wm) ∈ U . More precisely,

we introduce

∀(z?n,w?
m), (zn,wm) ∈ Ũ , δπ(z?n,w

?
m, zn,wm) =

∑
(i,j)∈I

log

(
f(Xij ;πz?i w?

j
)

f(Xij ;πziwj )

)
. (6)

Note that this quantity is well-defined on Ũ × Ũ . We also consider its expectation, under
true parameter value θ? and conditional on the event (Zn,Wm) = (z?n,w

?
m); namely for

any (z?n,w
?
m) and (zn,wm) ∈ Ũ , we let

∆π(z?n,w
?
m, zn,wm) =

∑
(i,j)∈I

E?

(
log
(f(Xij ;πz?i w?

j
)

f(Xij ;πziwj )

)∣∣∣(Zn,Wm) = (z?n,w
?
m)

)
. (7)

Probabilities and expectations conditional on (Zn,Wm) = (z?n,w
?
m) and under parameter

value θ? will be denoted by Pz?nw
?
m

? and Ez?nw
?
m

? , respectively.

3.2 Assumptions on the model

The results of this section are valid as long as the family of distributions {f(·;π);π ∈ Π} sat-
isfies some properties. We thus formulate these as assumptions in this general section, and
establish later that these assumptions are satisfied in each particular case to be considered.

The first of these assumptions is a (conditional on the configuration) concentration in-
equality on the random variable δπ(Zn,Wm, zn,wm) around its conditional expectation.
We only require it to be valid for configurations (Zn,Wm) = (z?n,w

?
m) ∈ Ũ0. Note that un-

der conditional probability Pz?nw
?
m

? , the random variables {Xij ; (i, j) ∈ I} are independent.

9



Assumption 3. (Concentration inequality). Fix (z?n,w
?
m) ∈ Ũ0 and (zn,wm) ∈ Ũ such

that (zn,wm) 6∼ (z?n,w
?
m). There exists some positive function ψ? : (0,+∞) → (0; +∞]

such that for any ε > 0, we have

Pz?nw
?
m

?

(∣∣∣δπ(z?n,w
?
m, zn,wm)− Ez?nw

?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)∣∣∣ ≥ ε(mr1 + nr2)
)

≤ 2 exp[−ψ?(ε)(mr1 + nr2)], (8)

where the distance d((z?n,w
?
m), (zn,wm)) defined by (2) is attained for some pair of permu-

tations (s, t) ∈ S and we set r1 := ‖z?n − s(zn)‖0 and r2 := ‖w?
m − t(wm)‖0.

Remark 2. Assumption 3 is reasonable and is often obtained by an exponential control of
the centered random variable

Yπ,π′ = log
f(X;π)

f(X;π′)
− Eπ

(
log

(
f(X;π)

f(X;π′)

))
,

uniformly in π, π′ ∈ Π. As shown in Section 4, as soon as

ψmax(λ) := sup
π,π′∈Π

Eπ(exp(λYπ,π′))

is finite for λ in a small open interval I ⊂ R around 0, a Cramer-Chernoff bound shows
that Equation (8) is satisfied with

ψ?(ε) :=
µ2

min

8
sup
λ∈I

(λε− ψmax(λ)).

The second assumption needed is a bound on the Kullback-Leibler divergences for ele-
ments of the family {f(·;π);π ∈ Π}. We let

D(π‖π′) :=

∫
X

log

(
f(x;π)

f(x;π′)

)
f(x;π)dx. (9)

Assumption 4. (Bounds on Kullbak-Leibler divergences). We assume that

κmax := max{D(π‖π′);π, π′ ∈ Π} < +∞.

Note that κmax < +∞ is automatically satisfied when the distributions in the family
{f(·;π); π ∈ Π} have same support. In particular, this is not the case for Bernoulli dis-
tributions when we authorize some probabilities π to be 0 or 1. In the following, we thus
exclude the possibility that classes may be almost never or almost surely connected. We
also introduce

κmin = κmin(π?) := min{D(π?ql‖π?q′l′); (q, l), (q′, l′) ∈ Q× L, π?ql 6= π?q′l′} > 0, (10)

where positivity is a consequence of Assumption 1. The parameter κmin measures how far
apart the non-identical entries of π? are and is the main driver of the convergence rate of
the posterior distribution.

The last assumption needed is a Lipschitz condition on an integrated version of the
function π 7→ log f(x;π).

Assumption 5. There exists some positive constant L0 such that for any π,π′ ∈ ΠQL and
any (q, l), (q′, l′) ∈ Q× L, we have∣∣∣∣∣

∫
X

log
f(x;πql)

f(x;π′ql)
f(x;πq′l′)dx

∣∣∣∣∣ ≤ L0‖π − π′‖∞.

10
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3.3 Convergence of the posterior distribution

We now establish some preliminary results. The first one gives the behavior of the condi-
tional expectation ∆π defined by (7) with respect to the distance between the two config-
urations (Zn,Wm) and (zn,wm).

Proposition 1. (Behavior of conditional expectation). Under Assumptions 1, 2 and 4, the
constant C = 2κmax > 0 is such that for any parameter value π ∈ ΠQL and any sequence
(zn,wm) ∈ Ũ , we have P?-almost surely

EZnWm
?

(
δπ(Zn,Wm, zn,wm)

)
≤ C

2
(mr1 + nr2), (11)

where the distance d((Zn,Wm), (zn,wm)) is attained for some (s, t) ∈ S and we set r1 :=
‖Zn − s(zn)‖0 and r2 := ‖Wm − t(wm)‖0.

Furthermore, under additional Assumption 5, the constant c = µ2
minκmin/16 ∈ (0, C/4)

is such that on the set Ω0 defined by (3) whose P?-probability satisfies P?(Ω0) ≥ 1− 2QL×
exp[−(n ∧m)µ2

min/2], for any parameter value π ∈ ΠQL and any sequence (zn,wm) ∈ Ũ ,
we have

EZnWm
?

(
δπ(Zn,Wm, zn,wm)

)
≥ 2(c− L0‖π − π?‖∞)(mr1 + nr2). (12)

Proof. Note that

EZnWm
?

(
δπ(Zn,Wm, zn,wm)

)
=

∑
(z?n,w

?
m)∈Ũ

Ez?nw
?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)
×1(Zn,Wm)=(z?n,w

?
m),

so that we can work on the set {(Zn,Wm) = (z?n,w
?
m)} for a fixed configuration (z?n,w

?
m) ∈

Ũ . Moreover, we can choose (zn,wm) ∈ Ũ that realizes the distance d((z?n,w
?
m), (zn,wm)),

namely such that d((z?n,w
?
m), (zn,wm)) = ‖z?n − zn‖0 + ‖w?

m −wm‖0 = r1 + r2.
If (zn,wm) = (z?n,w

?
m), namely r1 = r2 = 0, then we have δπ(z?n,w

?
m, zn,wm) = 0

and the lemma is proved. Otherwise, we may have r1 or r2 equal to zero but r1 + r2 ≥ 1.
Without loss of generality (w.l.o.g.), we can assume that z?n, zn (respectively w?

m,wm) differ
at the first r1 (resp. r2) indexes.

First, let us note that

Ez?nw
?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)
=
∑

(i,j)∈Ĩ

∫
X

log
(f(x;πz?i w?

j
)

f(x;πziwj )

)
f(x;π?z?i w?

j
)dx, (13)

where Ĩ = I r {(i, j); i > r1 and j > r2}. This leads to

Ez?nw
?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)
≤ (mr1 + nr2 − r1r2)κmax ≤

C

2
(mr1 + nr2),

with C = 2κmax, which establishes Inequality (11).
To prove Inequality (12), we write the decomposition∑

(i,j)∈Ĩ

∫
X

log
(f(x;πz?i w?

j
)

f(x;πziwj )

)
f(x;π?z?i w?

j
)dx =

∑
(i,j)∈Ĩ

{
−D(π?z?i w?

j
‖πz?i w?

j
)

+D(π?z?i w?
j
‖π?ziwj

) +

∫
X

log
f(x;π?ziwj

)

f(x;πziwj )
f(x;π?z?i w?

j
)dx
}
. (14)

11



According to Assumption 5, the third term in the right-hand side of the above equation is
lower-bounded by −L0‖π−π?‖∞(mr1 +nr2− r1r2). The first term in this right-hand side
is handled similarly as we have

0 <
∑

(i,j)∈Ĩ

D(π?z?i w?
j
‖πz?i w?

j
) =

∑
(i,j)∈Ĩ

∫
X

log
f(x;π?z?i w?

j
)

f(x;πz?i w?
j
)
f(x;π?z?i w?

j
)dx

≤ L0‖π − π?‖∞(mr1 + nr2 − r1r2),

where the second inequality is another application of Assumption 5.

The central term appearing in the right-hand side of decomposition (14) is handled
relying on the next lemma, whose proof is postponed to Appendix A. It is a generalization
to LBM of Proposition B.5 in Celisse et al. (2011) that considers SBM only. This lemma
bounds from below the number of pairs (i, j) such that

π?z?i w?
j
6= π?ziwj

and establishes that it is of order mr1 + nr2. This is possible only for the configurations
(z?n,w

?
m) ∈ Ũ0 defined by (4). For the rest of the proof, we work on the set Ω0, meaning

that we assume {(Zn,Wm) = (z?n,w
?
m) ∈ Ũ0}.

Lemma 2. (Bound on the number of differences). Under Assumptions 1 and 2, for any
configurations (zn,wm) ∈ Ũ and (z?n,w

?
m) ∈ Ũ0, we have

diff(zn,wm, z
?
n,w

?
m) :=

∣∣{(i, j) ∈ I;π?ziwj
6= π?z?i w?

j
}
∣∣ ≥ µ2

min

8
(mr1 + nr2), (15)

where the distance d((zn,wm), (z?n,w
?
m)) is attained for some pair of permutations (s, t) ∈ S

and we set r1 := ‖zn − s(z?n)‖0 and r2 := ‖wm − t(w?
m)‖0.

According to Assumption 4, if π?ziwj
6= π?z?i w?

j
, the divergence D(π?z?i w?

j
‖π?ziwj

) is at least

κmin. We thus get

∑
(i,j)∈Ĩ

D(π?z?i w?
j
‖π?ziwj

) ≥ µ2
minκmin

8
(mr1 + nr2).

Coming back to (14) and (13), we obtain

∑
(i,j)∈Ĩ

∫
X

log
(f(x;πz?i w?

j
)

f(x;πziwj )

)
f(x;π?z?i w?

j
)dx ≥

(µ2
minκmin

8
− 2L0‖π − π?‖∞

)
(mr1 + nr2)

and thus conclude

Ez?nw
?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)
≥
(
µ2

minκmin

8
− 2L0‖π − π?‖∞

)
(mr1 + nr2).

By letting c = µ2
minκmin/16 we obtain exactly (12). We moreover remark that 2c < C/2.

12
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In the following, we will consider asymptotic results where both n and m increase to
infinity. The next assumption settles the relative rates of convergence of n and m. With
no loss of generality, we assume in the following that n ≥ m, view m = mn as a sequence
depending on n and state the convergence results with respect to n→ +∞.

Assumption 6. (Asymptotic setup). The sequence (mn)n≥1 converges to infinity under
the constraints mn ≤ n and (log n)/mn → 0.

We now state the main theorem.

Theorem 1. Under Assumptions 1 to 6, following the notation of Proposition 1, for any η ∈
(0, c/(2L0)), there exists a family {εn,m}n,m of positive real numbers with

∑
n εn,mn < +∞,

such that on a set Ω1 whose P?-probability is at least 1− εn,m and for any θ = (µ,π) ∈ Θ
satisfying ‖π − π?‖∞ ≤ η, we have for any (zn,wm) ∈ U and any (s, t) ∈ S

(c− 2L0‖π − π?‖∞)(mr1 + nr2)−K(‖s(Zn)− zn‖0 + ‖t(Wm)−wm‖0)

≤ log
pθn,m(s(Zn), t(Wm))

pθn,m(zn,wm)
≤ C(mr1 + nr2) +K(‖s(Zn)− zn‖0 + ‖t(Wm)−wm‖0), (16)

where the distance d((s(Zn), t(Wm)), (zn,wm)), which does not depend on (s, t), is attained
for some invariant (s̃, t̃) ∈ S and we set r1 := ‖Zn − s̃(zn)‖0 and r2 := ‖Wm − t̃(wm)‖0
and K = log(αmax/αmin) ∨ log(βmax/βmin).

Let us comment this result. Inequality (16) provides a control of the concentration
of the posterior distribution on the actual (random) configuration (Zn,Wm), viewed as
an equivalence class in Ũ . Its most important part is its left-hand side that provides a
lower bound on the posterior probability of any configuration equivalent to the actual
configuration (Zn,Wm) compared to any other configuration (zn,wm). In this inequality,
two different distances appear between these configurations, namely the `0 distance and the
distance d(, ) given by (2), on the set of actual configurations (so that d(, ) is linked with
the parameter π and its symmetries). When the subgroup S is reduced to the identity pair
(no symmetries allowed in π), these two distances coincide and the statement substantially
simplifies. Another case where it simplifies is when K = 0, corresponding to αmax = αmin

and βmax = βmin or equivalently to uniform group proportions. These two particular cases
are further expanded below in the first two corollaries. In general, the two different distances
appear and play a different role in this inequality. In particular, consider Inequality (16)
with for instance s = Id = t. It may be the case that a putative configuration (zn,wm) is
equivalent to the actual random one (Zn,Wm) in the sense of relation ∼, and thus their
distance d(, ) is zero (r1 = r2 = 0 above), but their `0 distance is large. Then, the posterior
distribution pθn,m will not concentrate on (zn,wm) due to the existence of different group
proportions µ that help distinguish between (Zn,Wm) and this equivalent configuration
(zn,wm). The extent to which the group proportions µ are different is measured by K =
log(αmax/αmin)∨log(βmax/βmin). When this quantity is small compared to the term c−2L0η
(depending on π, the connectivity part of the parameter) appearing in the left-hand side
of (16), the term K(‖Zn−zn‖0 +‖Wm−wm‖0) is negligible and the posterior distribution
pθn,m will not distinguish between the actual configuration and any equivalent one.

Before giving the proof of the theorem, we provide some corollaries that will help un-
derstand the importance of the previous result. The first two corollaries deal with special

13



setups and the third one is an attempt to give a general understanding of the behaviour
of the groups posterior distribution. All these results state that, under some appropriate
condition, the posterior distribution pθn,m concentrates on the actual random configuration
(Zn,Wm), with large probability. We stress the fact that the results are valid for any
parameter value θ (satisfying some additional assumption) and not only the true one θ?.

Corollary 1. (Case S = {(Id, Id)}.) Under Assumptions 1 to 6 and when S = {(Id, Id)},
we obtain that on the set Ω1 whose P?-probability is at least 1 − εn,m, for any parameter
θ = (µ,π) ∈ Θ satisfying ‖π − π?‖∞ ≤ η, we have

pθn,m(Zn,Wm) ≥ 1− an,m exp(an,m) and pθn,m(Zn,Wm) ≤ (1 + bn,me
bn,m)−1, (17)

where an,m = (ne−(c−2L0η)m+K+me−(c−2L0η)n+K) and bn,m = (ne−Cm−K+me−Cn−K) both
converge to 0 as n→ +∞. As a consequence, relying on the maximum a posteriori (MAP)
procedure, at a parameter value θ̂ = (µ̂, π̂) such that π̂ converges to the true parameter
value π?, namely

(Ẑn,Ŵm) := argmax
(zn,wm)

pθ̂n,m(zn,wm), where θ̂ = (µ̂, π̂) and π̂ → π?,

the number of misclassified rows and/or columns on the set Ω1

n∑
i=1

1{Ẑi 6= Zi}+
m∑
j=1

1{Ŵj 6= Wj} for LBMs and
n∑
i=1

1{Ẑi 6= Zi} for SBMs,

is exactly 0 for large enough n.

Corollary 2. (Case of uniform group proportions.) Under Assumptions 1 to 6 and when
K = 0, we obtain that on the set Ω1, for any parameter θ = (µ,π) ∈ Θ satisfying ‖π −
π?‖∞ ≤ η, we have

pθn,m ({(zn,wm) ∈ U ; (zn,wm) ∼ (Zn,Wm)}) ≥ 1− |S|an,mean,m (18)

and pθn,m ({(zn,wm) ∈ U ; (zn,wm) ∼ (Zn,Wm)}) ≤ (1 + |S|bn,mebn,m)−1,

where an,m = (ne−m(c−2L0η) + me−n(c−2L0η)) and bn,m = (ne−mC + me−nC) both converge
to 0 as n→ +∞. Moreover

pθn,m (Zn,Wm) =
1

|S|
pθn,m ({(zn,wm) ∈ U ; (zn,wm) ∼ (Zn,Wm)}) . (19)

Corollary 3. (General case.) Under Assumptions 1 to 6, we obtain that on the set Ω1, for
any parameter θ = (µ,π) ∈ Θ satisfying ‖π − π?‖∞ ≤ η, we have

pθn,m ({(zn,wm) ∈ U ; (zn,wm) ∼ (Zn,Wm)}) ≥ 1− |S|an,mean,m (20)

and pθn,m ({(zn,wm) ∈ U ; (zn,wm) ∼ (Zn,Wm)}) ≤ (1 + |S|bn,mebn,m)−1,

where an,m = (ne−m(c−2L0η)+K + me−n(c−2L0η)+K) and bn,m = (ne−mC−K + me−nC−K)
both converge to 0 as n→ +∞.

14



SSB - RR No. 38 M. Mariadassou and C. Matias

Remark 3. Note that the convergence of the posterior distribution (to the set of configu-
rations equivalent to the actual random one) happens at a rate determined by the constant

c− 2L0η > 0.

Typically, the rate of this convergence is fast when π is not too different from π? (namely
‖π − π?‖∞ and thus L0η small) while the connectivity parameters are sufficiently distinct
(namely κmin and thus c large).

When S = {(Id, Id)}, the actual configuration has no other equivalent one and the
posterior distribution converges to it. When K = 0, group proportions are equal and do
not discriminate between equivalent configurations. Therefore, all equivalent configurations
(if any) are equally likely. When S 6= {(Id, Id)} and K > 0, the support of the posterior
distribution converges to the set of configurations equivalent to the actual one, including the
actual one. However, the latter may not be the most likely among those. Provided n and
m are large enough, the most likely configuration is the configuration (zn,wm) equivalent
to (Zn,Wm) which maximizes the quantity

n∑
i=1

logαzi +

m∑
j=1

log βzj =

Q∑
q=1

Nq(zn) logαq +

L∑
l=1

Nl(wm) log βl.

Also note that we control the number of errors made by a maximum a posteriori cluster-
ing procedure only in the case where S = {(Id, Id)}, namely when there are no symmetries
in the set of matrices ΠQL. In the other cases, this procedure is likely to select a config-
uration equivalent to the true one, but not equal to it. We stress again the fact that the
equivalence relation is different from the label switching issue that can not be avoided in
finite mixture models.

Proof of Theorem 1. We shall exhibit the set Ω1 on which Inequality (16) is satisfied. First
note that we have

log
pθn,m(s(Zn), t(Wm))

pθn,m(zn,wm)
= δπ(s(Zn), t(Wm), zn,wm)+

n∑
i=1

log

(
αs(Zi)

αzi

)
+

m∑
j=1

log

(
βt(Wj)

βwj

)
.

Thus, by letting K = log(αmax/αmin) ∨ log(βmax/βmin), Inequality (16) is satisfied as soon
as we have

(c− 2L0‖π − π?‖∞)(mr1 + nr2) ≤ δπ(s(Zn), t(Wm), zn,wm) ≤ C(mr1 + nr2). (21)

Note that the latter inequality is defined on the set of equivalent configurations Ũ and we
can thus replace (s(Zn), t(Wm)) by (Zn,Wm). Let (z?n,w

?
m) be a fixed configuration in

Ũ , consider (zn,wm) ∈ Ũ . Whenever (zn,wm) ∼ (z?n,w
?
m), we have r1 + r2 = 0 and the

previous inequality is automatically satisfied. Thus, we consider (zn,wm) ∈ Ũ such that
(zn,wm) 6= (z?n,w

?
m) and let r1 := ‖z?n− s̃(zn)‖0 and r2 := ‖w?

m− t̃(wm)‖0, where (s̃, t̃) ∈ S
realizes the distance d((z?n,w

?
m), (zn,wm)). We consider the event

A(z?n,w
?
m, zn,wm) = {δπ(z?n,w

?
m, zn,wm) < (c− 2L0‖π − π?‖∞)(mr1 + nr2)}

∪ {δπ(z?n,w
?
m, zn,wm) > C(mr1 + nr2)} ,
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where the constants c, C > 0 have been previously introduced in Proposition 1 and satisfy
0 < 2c < C/2. We also assume that π satisfies c − 2L0‖π − π?‖∞ > 0. According to
this same Proposition, as soon as the configuration (z?n,w

?
m) is regular in the sense that it

belongs to the set Ũ0 defined through Equation (4) and following lines, we obtain that on
the set {(Zn,Wm) = (z?n,w

?
m)}, we have

2(c− 2L0‖π − π?‖∞)(mr1 + nr2) ≤ Ez?nw
?
m

?

(
δπ(z?n,w

?
m, zn,wm)

)
≤ C

2
(mr1 + nr2).

We now control the probability of this event. Conditionally on {(Zn,Wm) = (z?n,w
?
m)},

the event A(z?n,w
?
m, zn,wm) is included in the two-sided deviation of δπ(z?n,w

?
m, zn,wm)

from its conditional expectation ∆π(z?n,w
?
m, zn,wm) at a distance at least

min{(c− 2L0‖π − π?‖∞)(mr1 + nr2),
C

2
(mr1 + nr2)}

= (c− 2L0‖π − π?‖∞)(mr1 + nr2) ≥ (c− 2L0η)(mr1 + nr2).

In other words,

A(z?n,w
?
m, zn,wm) ∩ {(Zn,Wm) = (z?n,w

?
m)} ⊂({

(δπ −∆π)(z?n,w
?
m, zn,wm) < −(c− 2L0‖π − π?‖∞)(mr1 + nr2)

}
∪
{

(δπ −∆π)(z?n,w
?
m, zn,wm) >

C

2
(mr1 + nr2)

})
⊂
{∣∣∣(δπ −∆π)(z?n,w

?
m, zn,wm)

∣∣∣ > (c− 2L0η)(mr1 + nr2)
}
.

Combining this sets’ inclusions with Assumption 3 yields

P?(A(z?n,w
?
m, zn,wm) ∩ {(Zn,Wm) = (z?n,w

?
m)}) ≤ P?((Zn,Wm) = (z?n,w

?
m))

× Pz?nw
?
m

?

(∣∣∣(δπ −∆π)(z?n,w
?
m, zn,wm)

∣∣∣ > (c− 2L0η)(mr1 + nr2)
)

≤ 2 exp[−ψ?(c− 2L0η)(mr1 + nr2)]µ(z?n,w
?
m). (22)

We now consider the set Ω1 defined by

Ω1 = Ω0 ∩
( ⋂

(zn,wm)∈Ũ

A(Zn,Wm, zn,wm)
)

=
⋃

(z?n,w
?
m)∈Ũ0

⋂
(zn,wm)∈Ũ

(
A(z?n,w

?
m, zn,wm) ∩ {(Zn,Wm) = (z?n,w

?
m)}

)
. (23)

On the set Ω1, Inequality (21) and thus Inequality(16) are both satisfied. We let

Ũz?nw
?
m := Ũ r {(z?n,w?

m)} = Ũ r {(s(z?n), t(w?
m)); (s, t) ∈ S},

be the set of all configurations but those which are equivalent to (z?n,w
?
m). Since for any

(s, t) ∈ S, the event A(z?n,w
?
m, s(z

?
n), t(w?

m)) has P?-probability zero, we may write

Ω1 = Ω0 ∪
( ⋃

(z?n,w
?
m)∈Ũ0

⋃
(zn,wm)∈Ũz?nw?

m

A(z?n,w
?
m, zn,wm) ∩ {(Zn,Wm) = (z?n,w

?
m)}

)
.
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We now partition the set of configurations (zn,wm) ∈ Ũz?nw
?
m according to the distance of

each point (zn,wm) to (z?n,w
?
m). We write the following disjoint union

Ũz?nw
?
m :=

n+m⊔
r1+r2=1

Ũz?nw
?
m(r1, r2)

:=
n+m⊔

r1+r2=1

{(zn,wm) ∈ Ũz?nw
?
m ; d((z?n,w

?
m); (zn,wm)) = ‖z?n − s(zn)‖0

+‖w?
m − t(wm)‖0 and ‖z?n − s(zn)‖0 = r1, ‖w?

m − t(wm)‖0 = r2}. (24)

Note that the above decomposition is not unique. Indeed, we may have that the distance
d((z?n,w

?
m); (zn,wm)) = r1 + r2 = r′1 + r′2 but r1 6= r′1 and r2 6= r′2. In such a case, we make

an arbitrary choice between the couples (r1, r2) and (r′1, r
′
2) to represent the distance from

(zn,wm) to (z?n,w
?
m). This decomposition leads to

P?(Ω1) ≤ P?(Ω0) + 2
∑

(z?n,w
?
m)∈Ũ0

µ(z?n,w
?
m)

×
n+m∑

r1+r2=1

|Ũz?nw
?
m(r1, r2)| exp[−ψ?(c− 2L0η)(mr1 + nr2)].

Now, we use the bound

|Ũz?nw
?
m(r1, r2)| ≤ |S|

(
n

r1

)(
m

r2

)
, (25)

which leads to

P?(Ω1) ≤ P?(Ω0) + 2
n+m∑

r1+r2=1

|S|
(
n

r1

)(
m

r2

)
exp[−ψ?(c− 2L0η)(mr1 + nr2)]

≤ P?(Ω0) + 2|S|
[
{1 + exp[−mψ?(c− 2L0η)]}n{1 + exp[−nψ?(c− 2L0η)]}m − 1

]
.

We now rely on the following bound, valid for any u, v > 0,

(1 + u)n × (1 + v)m − 1 ≤ (nu+mv) exp(nu+mv). (26)

Combining the latter with the control of the probability of Ω0 given in Proposition 1, we
obtain

P?(Ω1) ≤ 2QL exp(−(n ∧m)µ2
min/2) + 2|S|dn,m exp(dn,m),

where dn,m = [n exp{−ψ?(c− 2L0η)m}+m exp{−ψ?(c− 2L0η)n}].
Note that as soon as (mn)n≥1 is a sequence such that mn → +∞ and (log n)/mn → 0,

we obtain that for any constant a > 0, the sequence un = n exp(−amn) is negligible with
respect to n−1−s, for any s > 0, and thus

∑
n un < +∞. In particular, the sequence

εn,m := 2QL exp[−(n ∧m)µ2
min/2] + 2|S|dn,m exp(dn,m)

satisfies
∑

n εn,mn < +∞. This concludes the proof.
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Proof of Corollaries 1,2 and 3. The proof of these three corollaries relies on the same scheme
that we shall now present. First note that Ω1 = ∪(z?n,w

?
m)∈U0(Ω1∩{(Zn,Wm) = (z?n,w

?
m)}).

Let us fix some configuration (z?n,w
?
m) in U0. On the set Ω1 ∩ {(Zn,Wm) = (z?n,w

?
m)}, we

have

1− pθn,m ({(Zn,Wm)}) ≤
1− pθn,m ({(Zn,Wm)})
pθn,m ({(Zn,Wm)})

=
∑

(zn,wm)∈U
(zn,wm)6∼(z?n,w

?
m)

exp
(
− log

pθn,m ({(z?n,w?
m)})

pθn,m(zn,wm)

)
,

where we abbreviate to {(Zn,Wm)} and {(z?n,w?
m)} the whole sets of configurations {(zn,wm) ∼

(Zn,Wm)} and {(zn,wm) ∼ (z?n,w
?
m)}, respectively. Let (zn,wm) 6∼ (z?n,w

?
m). There ex-

ists (s, t) ∈ S such that ‖zn − s(z?n)‖0 = r1 and ‖wm − t(w?
m)‖0 = r2. Using the left-hand

side of Inequality (16) and ‖π − π?‖∞ ≤ η, we get

log
pθn,m ({(z?n,w?

m)})
pθn,m(zn,wm)

≥ log
pθn,m(s(z?n), t(w?

m))

pθn,m(zn,wm)
≥ (c− 2L0η)(mr1 + nr2) +K(r1 + r2)

and therefore

1− pθn,m ({(Zn,Wm)}) ≤
∑

(zn,wm)∈U
(zn,wm)6∼(z?n,w

?
m)

exp[−(c− 2L0η)(mr1 + nr2) +K(r1 + r2)]. (27)

When S = {(Id, Id)}, the set {(zn,wm) ∼ (Zn,Wm)} reduces to a singleton and the
previous bound becomes

1− pθn,m(Zn,Wm) ≤
∑

(zn,wm)∈U
(zn,wm)6∼(z?n,w

?
m)

exp[−(c− 2L0η)(mr1 + nr2) +K(r1 + r2)].

Using the decomposition (24) on the set Ũz?nw
?
m and the bound (25) on the cardinality of

each Ũz?n,w
?
m(r1, r2), we get

1− pθn,m(Zn,Wm) ≤
n+m∑

r1+r2=1

(
n

r1

)(
m

r2

)
exp[−(c− 2L0η)(mr1 + nr2) +K(r1 + r2)]

= {(1 + exp(−mc1 +K))n(1 + exp(−nc1 +K))m − 1},

where c1 = c− 2L0η. Using again Inequality (26), we obtain

1− pθn,m(Zn,Wm) ≤ an,m exp(an,m),

where an,m = (ne−(c−2L0η)m+K +me−(c−2L0η)n+K).

The case where K = 0 is handled similarly and gives

1− pθn,m ({(Zn,Wm)}) ≤ |S|an,m exp(an,m),
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where an,m = (ne−(c−2L0η)m + me−(c−2L0η)n). Moreover when K = 0, we have α1 = · · · =
αQ and β1 = · · · = βL and it easy to check that

pθn,m(Zn,Wm) = pθn,m(s(Zn), t(Wm))

for all (s, t) ∈ S.
Now, in the general case, we come back to (27). Using the decomposition (24) on the

set Ũz?nw
?
m and the bound (25) on the cardinality of each Ũz?n,w

?
m(r1, r2), we get

1− pθn,m ({(Zn,Wm)}) ≤
n+m∑

r1+r2=1

|S|
(
n

r1

)(
m

r2

)
exp[−(c− 2L0η)(mr1 + nr2) +K(r1 + r2)]

≤ |S|{(1 + exp(−mc1 +K))n(1 + exp(−nc1 +K))m − 1},

where c1 = c− 2L0η. Using again Inequality (26), we obtain

1− pθn,m ({(zn,wm) ∼ (Zn,Wm)}) ≤ |S|an,m exp(an,m),

where an,m = n exp(−mc1 +K) +m exp(−nc1 +K).
We now provide an upper bound for the posterior probability of the class {(zn,wm) ∼

(Zn,Wm)}, valid on the set Ω1. Let us fix some configuration (z?n,w
?
m) in U0. On the set

Ω1 ∩ {(Zn,Wm) = (z?n,w
?
m)}, we have

1

pθn,m ({(Zn,Wm)})
= 1 +

∑
(zn,wm)6∼(Zn,Wm)

exp
(
− log

pθn,m ({(Zn,Wm)})
pθn,m(zn,wm)

)
and relying on the right-hand side of Inequality (16), we get

pθn,m ({(z?n,w?
m)}) ≤

{
1 +

∑
(zn,wm)6∼(z?n,w

?
m)

exp
(
− log

pθn,m ({(z?n,w?
m)})

pθn,m(zn,wm)

)}−1

≤
{

1 +
∑

(zn,wm)6∼(z?n,w
?
m)

exp
(
− C(mr1 + nr2)−K(r1 + r2)

)}−1
.

Following the same lines, we obtain the desired upper-bounds.

4 Examples of application

The goal of this section is to derive the results of Theorem 1 and following corollaries in
many different setups. The key ingredient for that lies in establishing the concentration of
the ratio δπ around its conditional expectation ∆π (namely Assumption 3). The general
scheme of proof is first presented, different setups are then explicitly explored.

4.1 Scheme of proof of concentration inequalities

One of the main issues for Theorem 1 to be valid is the existence of a concentration of
the ratio δπ around its conditional expectation ∆π, namely Assumption 3. This section
presents the general methodology that will be employed.
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The scheme of proof is as follows. Relying on the notation of Assumption 3 and using (7),
we write

δπ(z?n,w
?
m, zn,wm)−∆π(z?n,w

?
m, zn,wm)

=
∑

(i,j)∈I

log

(
f(Xij ;πz?i w?

j
)

f(Xij ;πziwj )

)
− Ez?nw

?
m

θ log

(
f(Xij ;πz?i w?

j
)

f(Xij ;πziwj )

)
:=

∑
(i,j)∈I

Yij ,

Conditional on (Zn,Wm) = (z?n,w
?
m), the random variables Yij are independent and cen-

tered. There are exactly D := diff(z?n,w
?
m, zn,wm) such non null variables and since

D ≤ mr1 + nr2 − r1r2 ≤ mr1 + nr2, we may write

Pz?nw
?
m

? (|(δπ −∆π)(z?n,w
?
m, zn,wm)| ≥ ε(mr1 + nr2)) ≤ Pz?nw

?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 .

(28)
Thus, the problem boils down to establishing a concentration inequality for the sum

∑
Yij

composed of D conditionally independent and centered random variables. As soon as we
have the existence of a positive function ψ?max such that for any ε > 0,

Pz?nw
?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 ≤ 2 exp{−ψ?max(ε)D}, (29)

we can combine Lemma 2 and bound (28) to obtain

Pz?nw
?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ ε(mr1 + nr2)

 ≤ 2 exp
{
− ψ?max(ε)µ2

min(mr1 + nr2)/8
}

:= 2 exp
{
− ψ?(ε)(mr1 + nr2)

}
,

with ψ?(·) = ψ?max(·)µ2
min/8. Note that Inequality (29) is often obtained through a Cramer-

Chernoff bound in the following way. We let ψij(λ) := logEz?nw
?
m

? (exp(λYij)), for any λ > 0
such that this quantity is finite, let us say λ ∈ I ⊂ R. Using a Cramer-Chernoff bound, we
get for any x > 0,

Pz?nw
?
m

? (|Yij | ≥ x) ≤ 2 exp
{
− sup

λ∈I
(λx− ψij(λ))

}
.

As soon as we can uniformly bound this quantity, namely if we can write

Pz?nw
?
m

? (|Yij | ≥ x) ≤ 2 exp
{
− sup

λ∈I
(λx− ψmax(λ))

}
,

with ψmax := max(i,j)∈I ψij , the conditional independence of the Yij ’s gives that for any
ε > 0, and any λ > 0,

Pz?nw
?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 ≤ 2 exp{−(λεD −Dψmax(λ))},
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leading to

Pz?nw
?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 ≤ 2 exp{−D sup

λ∈I
(λε− ψmax(λ))} ≤ 2 exp

{
−Dψ?max(ε)

}
,

where ψ?max(ε) := supλ∈I(λε − ψmax(λ)). Note that since ψij(0) = 0, we have ψmax(0) = 0
and ψ?max is non negative.

4.2 Binary observations

In this section, we assume that Xij ∈ {0, 1} and f(·;π) is a Bernoulli distribution with
parameter π. In this case, point i) in Assumption 1 is automatically satisfied.

We first state a condition on the parameters π ∈ Π that ensures both that Assumptions 3
and 4 are satisfied. Note that this constraint, although rather general, does not cover the
cases where some probabilities πql may either be 0 or 1.

Assumption 7. The parameter set Π is included in [a, 1− a] for some a ∈ (0, 1/2).

Lemma 3. Under Assumption 7, we obtain that Assumption 3 is satisfied with ψ?(x) =
x2µ2

min/[16(log(1− a)− log a)2].

Proof. According to Equation (5) and Assumption 7 ensuring πql 6= 0, 1, the log ratio of
the posterior probabilities δπ as well as its conditional expectation ∆π are always finite.
Here, we have

Yij = Xij log

(
πz?i w?

j

πziwj

)
+ (1−Xij) log

(
1− πz?i w?

j

1− πziwj

)
+ c,

where c is a centering constant. Conditional on (Zn,Wm) = (z?n,w
?
m), the random variables

Yij are independent, centered and bounded by 2[log(1 − a) − log a]. A simple Hoeffding’s
Inequality then yields (29) with ψ?max(x) = x2/[2{log(1−a)−log a}2]. This gives the desired
the result.

Corollary 4. Consider the model defined by (1) where f(·;π) is a Bernoulli distribution
with parameter π ∈ Π. Under ii) of Assumption 1 and Assumptions 6, 7, the conclusions
of Theorem 1 and Corollaries 1 to 3 are valid.

Proof. According to Lemma 3, it suffices to prove that Assumptions 4 and 5 are valid. But
as we assume πql 6= 0, 1, the Bernoulli distributions are supported exactly on {0, 1} and the
requirement κmax < +∞ is satisfied. Moreover, as πql ∈ [a, 1−a], Assumption 5 is satisfied
with L0 = 1/a.

4.3 Binomial observations

In this section, we assume that Xij ∈ {0, . . . , p} and f(·;π) is a Binomial distribution
B(p, π). In this case, point i) in Assumption 1 is satisfied. We shall also make Assumption 7,
so that Assumptions 3 and 4 are also satisfied.

Lemma 4. Under Assumption 7, we obtain that Assumption 3 is satisfied with ψ?(x) =
x2µ2

min/[16p2(log(1− a)− log a)2].
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Proof. According to Equation (5) and Assumption 7 ensuring πql 6= 0, 1, the log ratio of
the posterior probabilities δπ as well as its conditional expectation ∆π are always finite.
Here, we have

Yij =

p∑
k=0

1{Xij = k}
{
k log

(
πz?i w?

j

πziwj

)
+ (p− k) log

(
1− πz?i w?

j

1− πziwj

)}
+ c,

where c is a centering constant. Now, the Yij ’s are bounded by 2p{log(1− a)− log a} and
the same proof as in Lemma 3 applies.

The proof of the following corollary follows the same lines as for Corollary 4 and is
omitted.

Corollary 5. Consider the model defined by (1) where f(·;π) is a Binomial distribution
B(p, π) with parameter π ∈ Π. Under ii) of Assumption 1 and Assumptions 6, 7, the
conclusions of Theorem 1 and Corollaries 1 to 3 are valid.

4.4 Discrete observations

In this section, we assume that Xij ∈ {1, . . . , p} and f(·;π) is a discrete distribution with
parameter π = (π(1), . . . , π(p)) and f(k;π) = π(k) for any 1 ≤ k ≤ p. In this case, point i)
in Assumption 1 is automatically satisfied. We state a condition on the parameters π ∈ Π
that ensures both Assumptions 3 and 4 are also satisfied.

Assumption 8. The parameter set Π is included in [a, 1− a]p for some a ∈ (0, 1/2).

Lemma 5. Under Assumption 8, we obtain that Assumption 3 is satisfied with ψ?(x) =
x2µ2

min/{8p[log(1− a)− log a]2}.

Proof. According to Equation (5) and Assumption 8 ensuring πql(k) 6= 0, 1, the log ratio
of the posterior probabilities δπ as well as its conditional expectation ∆π are always finite.
Here, we have

Yij =

p∑
k=1

1{Xij = k} log

(
πz?i w?

j
(k)

πziwj (k)

)
+ c,

where c is a centering constant. Conditional on (Zn,Wm) = (z?n,w
?
m), the random variables

Yij are independent, centered and bounded by p[log(1 − a) − log a]. A simple Hoeffding’s
Inequality then yields (29) with ψ?max(x) = x2/{p[log(1−a)−log a]2}. This gives the desired
the result.

Corollary 6. Consider the model defined by (1) where f(·;π) is a discrete distribution with
parameter π ∈ Π. Under ii) of Assumption 1 and Assumptions 6, 8, the conclusions of
Theorem 1 and Corollaries 1 to 3 are valid.

Proof. According to Lemma 5, it suffices to prove that Assumptions 4 and 5 are valid.
But as we assume πql(k) 6= 0, 1 for all k, the discrete distributions are supported exactly on
{1, . . . , p} and the requirement κmax < +∞ is satisfied. Moreover, Assumption 5 is satisfied
with L0 = 1/a.
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4.5 Poisson observations

In this section, we assume that Xij ∈ N and f(·;π) is a Poisson distribution with parameter
π ∈ Π. In this case, point i) in Assumption 1 is automatically satisfied. We state a condition
on the parameter π ∈ Π that ensures both Assumptions 3 and 4 are also satisfied.

Assumption 9. The parameter set Π is included in [πmin, πmax] ⊂ (0; +∞).

Lemma 6. Under Assumption 9, we obtain that Assumption 3 is satisfied with ψ?(x) =
µ2

minπmaxh(x/(πmax log(πmax/πmin)))/8 and h(u) = (1 + u) log(1 + u)− u, for all u ≥ −1.

Proof. According to Equation (5) and Assumption 9 ensuring πql > 0, the log ratio of the
posterior probabilities δπ as well as its conditional expectation ∆π are always finite. Here,
we have

Yij = log

(
πz?i w?

j

πziwj

)
(Xij − πz?i w?

j
).

Conditional on (Zn,Wm) = (z?n,w
?
m), the random variables Yij are independent, centered

and up to a scale factor, these are Poisson random variables. We let

h(u) = (1 + u) log(1 + u)− u, ∀u ≥ −1

and write for any x > 0, a Cramer-Chernoff bound for a Poisson variable

Pz?nw
?
m

? (|Yij | ≥ x) ≤ Pz?nw
?
m

?

(
|Xij − πz?i w?

j
| ≥ x

log(πmax/πmin)

)
≤ 2 exp

{
−πz?i w?

j
h

(
x

πz?i w?
j

log(πmax/πmin)

)}
,

(see for instance Massart, 2007). Since for any u > 0, we have π 7→ −πh(u/π) is increasing
on (0,+∞), we obtain

Pz?nw
?
m

? (|Yij | ≥ x) ≤ 2 exp

{
−πmaxh

(
x

πmax log(πmax/πmin)

)}
.

Let D = diff(zn,wm, z
′
n,w

′
m). The conditional independence of the Yij ’s combined with

the previous Cramer-Chernoff bound yields

Pzn,wm

θ

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 ≤ 2 exp

{
−Dπmaxh

(
ε

πmax log(πmax/πmin)

)}
,

which concludes the proof.

Corollary 7. Consider the model defined by (1) where f(·;π) is a Poisson distribution
with parameter π ∈ Π. Under ii) of Assumption 1 and Assumptions 6, 9, the conclusions
of Theorem 1 and Corollaries 1 to 3 are valid.

Proof. According Lemma 6, it suffices to prove that Assumption 4 and 5 are valid. But as we
assume πql > 0, the Bernoulli distributions are supported exactly on N and the requirement
κmax < +∞ is satisfied. Moreover, Assumption 5 is satisfied with L0 = πmax/πmin.
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4.6 Gaussian location model

In this section, we are interested in Gaussian observations in the homoscedastic case. We
thus assume that Xij ∈ R and f(·;π) is a Gaussian distribution with mean value π and
fixed variance σ2. Namely, we have f(x;πij) = c exp{−(x − πij)

2/(2σ2)}, where c is a
normalizing constant. Note that point i) in Assumption 1 is satisfied. We also require
bounded values for π ∈ Π for concentration inequalities to be uniformly satisfied, namely a
variant of Assumption 9 as we do not impose positivity on the parameters.

Assumption 10. The parameter set Π is included in [πmin, πmax] ⊂ R.

Lemma 7. Under Assumption 10, we obtain that Assumption 3 is satisfied with ψ?(x) =
x2σ2µ2

min/(16(πmax − πmin)2).

Proof. Since the distributions f(·;π) are absolutely continuous with respect to the Lebesgue
measure, the log ratio of the posterior probabilities δπ as well as its conditional expectation
∆π are always finite. Here, we have

Yij =
1

σ2
(πziwj − πz?i w?

j
)(Xij − πz?i w?

j
).

Thus, Yij is Gaussian centered with variance (πziwj−πz?i w?
j
)2/σ2. A Cramer-Chernoff bound

for Gaussian variables gives, for any x > 0 (see for instance Massart, 2007),

Pz?nw
?
m

? (|Yij | ≥ x) ≤ 2 exp

(
− σ2x2

2(πziwj − πz?i w?
j
)2

)
≤ 2 exp

(
− σ2x2

2(πmax − πmin)2

)
.

Combining this with the independence of the Yij ’s and letting D = diff(z?n,w
?
m, zn,wm),

we obtain that for any ε > 0,

Pz?nw
?
m

?

| ∑
(i,j)∈I

Yij | ≥ εD

 ≤ 2 exp

(
− Dσ2ε2

2(πmax − πmin)2

)
.

This corresponds to Inequality (29) with ψ?max(x) = x2σ2/(2(πmax − πmin)2), which gives
the desired result.

The following corollary is a direct consequence of the previous lemma and the fact that
Assumption 5 is satisfied in this case with L0 = πmax/σ

2.

Corollary 8. Consider the model defined by (1) where f(·;π) is a Gaussian distribution
with mean value π and fixed variance σ2. Under ii) of Assumption 1 and Assumptions 6, 10,
the conclusions of Theorem 1 and Corollaries 1 to 3 are valid.

4.7 Gaussian scale model

In this section, we are interested in Gaussian observations with fixed mean and different
variances. We thus assume that Xij ∈ R and f(·;π) is a Gaussian distribution with fixed
mean value m and variance π ∈ (0; +∞). Namely, we have f(x;πij) = c(πij)

−1/2 exp{−(x−
m)2/(2πij)}, where c is a normalizing constant. Note that point i) in Assumption 1 is
satisfied. We also impose bounded values for π ∈ Π, namely Assumption 9, for concentration
inequalities to be uniformly satisfied.
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Lemma 8. Under Assumption 9, we obtain that Assumption 3 is satisfied with ψ?(x) =
µ2

minπminx/{8(πmax − πmin)}+ µ2
min log{1 + 2πminx/(πmax − πmin)}/16.

Proof. Since the distributions f(·;π) are absolutely continuous with respect to the Lebesgue
measure, the log ratio of the posterior probabilities δπ as well as its conditional expectation
∆π are always finite. Here, we have

Yij =
πz?i w?

j
− πziwj

2πziwj

×

(
(Xij −m)2

πz?i w?
j

− 1

)
.

Thus, up to a scale factor, Yij follows a centered χ2(1) (χ-square with 1 degree of freedom)
distribution. A Cramer-Chernoff bound for χ2(1) random variables gives, for any x > 0
(see for instance Massart, 2007),

Pz?nw
?
m

? (|Yij | ≥ x) = Pθ

(
|X − 1| ≥

2πziwjx

|πz?i w?
j
− πziwj |

)
≤ Pθ

(
|X − 1| ≥ 2πminx

πmax − πmin

)
≤ 2 exp

{
− πminx

πmax − πmin
+

1

2
log

(
1 +

2πminx

πmax − πmin

)}
,

where X ∼ χ2(1). Combining this bound with the conditional independence of the Yij ’s,
Assumption 9 and letting D = diff(z?n,w

?
m, zn,wm), we obtain that for any ε > 0,

Pz?nw
?
m

?

∣∣∣ ∑
(i,j)∈I

Yij

∣∣∣ ≥ εD
 ≤ 2 exp

{
− πminεD

πmax − πmin
+
D

2
log

(
1 +

2πminε

πmax − πmin

)}
.

This corresponds to Inequality (29) and leads to the desired result.

The following corollary is a direct consequence of the previous lemma and the fact that
Assumption 5 is satisfied in this case with L0 = 1/(2πmin).

Corollary 9. Consider the model defined by (1) where f(·;π) is a Gaussian distribution
with fixed mean value m and variance π ∈ Π. Under ii) of Assumption 1 and Assump-
tions 6, 9, the conclusions of Theorem 1 and Corollaries 1 to 3 are valid.

4.8 Mixture of Dirac and continuous distribution

In this section, we assume that Xij follows a mixture of a Dirac mass at zero and a contin-
uous distribution (on R for instance). This situation is particularly relevant for modeling
sparse matrices (Ambroise and Matias, 2011). In this context, the former parameter π
becomes now (π, γ) ∈ (0, 1)× Γ and we let

f(·;π, γ) = πf̃(·; γ) + (1− π)δ0(·), (30)

where δ0 is the Dirac mass at 0. For identifiability reasons, we also constrain the parametric
family {f̃(·; γ); γ ∈ Γ} such that any distribution in this set admits a continuous cumulative
distribution function (c.d.f.) at zero. Moreover, we shall assume that the distributions
{f̃(·; γ); γ ∈ Γ} have exactly the same support so that for any γ ∈ Γ, the random variable
f̃(Xij ; γ) is P?-almost surely non zero.
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Assumption 11. Each distribution in {f̃(·; γ); γ ∈ Γ} admits a continuous c.d.f. at zero.
Moreover, the distributions {f̃(·; γ); γ ∈ Γ} have exactly the same support.

For instance, f̃(·; γ) may be absolutely continuous with respect to the Lebesgue measure.
Another interesting case consists in considering the density (with respect to the counting
measure) of the Poisson distribution, with parameter γ, but truncated at zero. Namely, for
any k ≥ 1, we let f̃(k; γ) = γk/(k!)(eγ − 1)−1. This leads to zero-inflated Poisson models
and more generally, one could consider other zero-inflated counts models.

In the following, we will assume that π satisfies Assumption 7 and that the family
{f̃(·; γ); γ ∈ Γ} satisfies a concentration property on its likelihood ratio statistics as follows.

Assumption 12. Fix (z?n,w
?
m) ∈ Ũ0 and (zn,wm) in Ũ with (z?n,w

?
m) 6= (zn,wm). Let

Ỹij = log[f̃(Xij ; γz?i w?
j
)/f̃(Xij ; γziwj )] + c, where c is a centering constant. There exists a

positive function ψ̃?max : (0,+∞)→ (0,+∞] such that for any x > 0, for any (i, j) ∈ I,

Pz?nw
?
m

? (|Ỹij | ≥ x|Xij 6= 0) ≤ 2 exp{− sup
λ∈I

(λx− ψ̃max(λ))} := 2 exp(−ψ̃?max(x)),

where ψ̃max(λ) = max(i,j)∈I logEz?nw
?
m

? (exp(λYij)|Xij 6= 0) exists for any λ ∈ I ⊂ (0; +∞).

Lemma 9. Under Assumptions 7, 11 and 12, we obtain that Assumption 3 is satisfied, up
to an extra factor 2, with ψ?(x) = µ2

min(ψ̃?max(x/2)∧x2/{8[log(1−a)− log a]2})/8. Namely,
using the same notation as in Assumption 3, we get

Pz?nw
?
m

? (|(δπ −∆π)(z?n,w
?
m, zn,wm)| ≥ ε{mr1 + nr2}) ≤ 4 exp[−ψ?(ε){mr1 + nr2}].

Proof. According to Assumptions 7 and 11, the log ratio of the posterior probabilities δπ

as well as its conditional expectation ∆π are always finite. Here, we have Yij = Y
(1)
ij +Y

(2)
ij

where

Y
(1)
ij = 1{Xij = 0} log

(
1− πz?i w?

j

1− πziwj

)
+ 1{Xij 6= 0} log

(
πz?i w?

j

πziwj

)
+ c1,

Y
(2)
ij = 1{Xij 6= 0} log

(
f̃(Xij ; γz?i w?

j
)

f̃(Xij ; γziwj )

)
+ c2 = 1{Xij 6= 0}Ỹij ,

where c1, c2 are centering constants. Conditional on (Zn,Wm) = (z?n,w
?
m), the families

{Y (1)
ij }(i,j∈I) and {Y (2)

ij }(i,j∈I) respectively contain independent and centered random vari-

ables. Moreover, as the random variables {Y (1)
ij }(i,j∈I) are bounded by 2[log(1− a)− log a],

we can apply a Cramer-Chernoff bound on the deviation of each Y
(1)
ij . For any x > 0, we

write

Pz?nw
?
m

? (|Yij | ≥ x) ≤ Pz?nw
?
m

?

(
|Y (1)
ij | ≥ x/2

)
+ Pz?nw

?
m

?

(
|Y (2)
ij | ≥ x/2

)
≤ 2 exp

{
− (x/2)2

2[log(1− a)− log a]2

}
+ pziwjP

z?nw
?
m

?

(
|Ỹij | ≥ x/2

∣∣∣Xij 6= 0
)

≤ 2 exp

{
− x2

8[log(1− a)− log a]2

}
+ 2 exp{− sup

λ∈I
(λx/2− ψ̃max(λ))}.
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Let D = diff(z?n,w
?
m, zn,wm). Combining these Cramer-Chernoff bounds with the respec-

tive conditional independence of the {Y (1)
ij }i,j and {Y (2)

ij }i,j yields

Pz?nw
?
m

?

(∣∣∑
ij

Yij
∣∣ ≥ εD)

≤2 exp

{
− Dε2

8[log(1− a)− log a]2

}
+ 2 exp{−D sup

λ∈I
(λε/2− ψ̃max(λ))}

≤4 exp

{
−D

(
ψ̃?max(ε/2) ∧ ε2

8[log(1− a)− log a]2

)}
.

This corresponds to Inequality 29 (up to an extra factor 2) and yields the result.

In order to ensure Assumption 5, we need the hypothesis to be satisfied on the family
{f̃(·; γ); γ ∈ Γ}.

Assumption 13. There exists some positive constant L̃0 such that for any γ,γ ′ ∈ ΓQL
and any (q, l), (q′, l′) ∈ Q× L, we have∣∣∣∣∣

∫
X

log
f̃(x; γql)

f̃(x; γ′ql)
f̃(x; γq′l′)dx

∣∣∣∣∣ ≤ L̃0‖γ − γ ′‖∞.

Note that we provided in the previous sections many examples of families for which this
assumption is satisfied. Combined with Assumption 7, this ensures that Assumption 5 is
satisfied with L0 = a−1 + L̃0. Then, the following corollary is a direct consequence from
the previous results and Assumption 11 ensuring that κmax is always finite.

Corollary 10. Consider the model defined by (1) where f(·;π, γ) is a mixture given by (30).
Under Assumptions 1, 6, 7, 11, 12 and 13, the conclusions of Theorem 1 and Corollaries 1
to 3 are valid.

5 Asymptotically decreasing connections density

In this section, we explore the limiting case where the numbers of groups Q and L remain
constant while the connections probabilities between groups converge to 0. This framework
is interesting as it models the case where groups sizes increase linearly with the number
of row/column objects, while the mean number of connections (i.e. non-null observations
in the data matrix) increases only sub-linearly, mimicking for example budget constraints
in terms of global consumptions. More precisely, we will consider two different setups, the
first one being built on the binary case developed in Section 4.2 and the second one being
built on the weighted case from Section 4.8. As in the previous sections, we assume that
m ≤ n, view m := mn as a sequence depending on n and state the results with respect to
n → ∞. We shall furthermore assume that the probability of connection (binary case) or
the sparsity parameter (weighted case) πql,n depends on n and writes πql,n = ξnπql where
(ξn)n≥1 converges to zero and πql is a positive constant. The sequence (ξn)n∈N controls
the overall density of the block model and acts as a scaling factor while the parameters
(πql)(q,l)∈Q×L reflect the unscaled connection probabilities from the different groups. This
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parametrization is analogous to the one studied in Bickel and Chen (2009). We shall
now assume that the unscaled connection/sparsity probabilities are well-behaved, as in
Assumption 7 and shall introduce the new parameter sets denoted by Πn and ΠQL,n to
account for the dependence on the data size (i.e. number of rows/columns).

Assumption 14. The parameter sets Πn and ΠQL,n depend on the number of observations
and we have

Π ⊂ [a, 1− a] for some a ∈ (0, 1/2),

Πn := ξnΠ = {ξnπ;π ∈ Π},
ΠQL ⊂ ΠQL,

ΠQL,n := ξnΠQL = {ξnπ;π ∈ ΠQL},

where (ξn)n≥1 is a sequence of values in [0, 1] converging to 0 and such that

log n

nξ2
n

→ 0 and
log n

mnξ2
n

→ 0.

5.1 Binary block models with a vanishing density

In this setup, the connectivity parameter πn = (πql,n)(q,l)∈Q×L depends on n and may be
arbitrarily close to 0. Accordingly, the constant κmin(πn) defined in (10) depends on n and
is no longer bounded away from 0. We thus reconsider Assumptions 3, 5 and the definition
of κmin(πn) to exhibit the scaling in n of several key quantities in this setup.

Lemma 10. Fix two parameters πn = ξnπ and π′n = ξnπ
′ in the set ΠQL,n, where π,π′ ∈

ΠQL. Under Assumption 14, we have for all n and all (q, l), (q′, l′) ∈ Q× L

κmin,n := κmin(π?n) ≥ ξncmin(π?), (31)∣∣∣∣∣
∫
X

log
f(x;πql,n)

f(x;π′ql,n)
f(x;πq′l′,n)dx

∣∣∣∣∣ ≤ ξn‖π − π′‖∞
a

, (32)

ψ?n(x) := ψ?(x) = x2µ2
min/[16{log(1− a)− log a}2], (33)

where

cmin := cmin(π?) =

(
a

1− a

)2

×min

{
(π?ql − π?q′l′)2

π?ql
; (q, l), (q′, l′) ∈ Q× L, π?ql 6= π?q′l′

}
> 0.

Proof. For any π, π′ ∈ Π and any ξ ∈ (0, 1), the Kullback-Leibler divergence D(ξπ||ξπ′)
writes

D(ξπ||ξπ′) = ξπ log
π

π′
+ (1− ξπ) log

(
1− ξπ
1− ξπ′

)
= −ξπ log

(
1 +

π′ − π
π

)
− (1− ξπ) log

(
1 +

ξ(π − π′)
1− ξπ

)
.
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Now, relying on the convexity inequality log(1 + x) ≤ x valid for x > −1 and also on a
Taylor series expansion of log(1 + x), there exists some θ with |θ| ≤ |π′ − π|/π such that

D(ξπ||ξπ′) ≥ ξ(π − π′) + ξ
(π − π′)2

2π

1

(1 + θ)2
− ξ(π − π′)

≥ ξ
(π − π′)2

2π

(
a

1− a

)2

.

Coming back to the definition (10) of κmin(π?n) yields

κmin,n := κmin(π?n) = κmin(ξnπ
?)

= min{D(ξnπ
?
ql‖ξnπ?q′l′); (q, l), (q′, l′) ∈ Q× L, π?ql 6= π?q′l′}

≥ ξncmin(π?), for all n.

Note that κmin,n scales with ξn only when Π is bounded away from 0 and 1. Otherwise a
simple bound based on the comparison between Kullback-Leibler divergence and the total
variation metric shows that κmin,n scales with ξ2

n.

A similar scaling can be found to replace Assumption 5. Indeed, for any π, π′, π′′ ∈ Π
and ξ > 0, we have in the binary case∣∣∣∣∫

X
log

f(x; ξπ)

f(x; ξπ′)
f(x; ξπ′′)dx

∣∣∣∣ =

∣∣∣∣ξπ′′ log
π

π′
+ (1− ξπ′′) log

(
1− ξπ
1− ξπ′

)∣∣∣∣ ≤ ξ|π − π′|
a

.

Therefore, for any (q, l), (q′, l′) ∈ Q× L,∣∣∣∣∣
∫
X

log
f(x;πql,n)

f(x;π′ql,n)
f(x;πq′l′,n)dx

∣∣∣∣∣ ≤ ξn‖π − π′‖∞
a

.

Finally, we need the correct scaling for ψ?n(x) that appears in Assumption 3. Following
the scheme of proof developed in Section 4.1, it turns out that the random variables Yij,n
defined by

Yij,n = Xij,n log

(
πz?i w?

j ,n

πziwj ,n

)
+ (1−Xij,n) log

(
1− πz?i w?

j ,n

1− πziwj ,n

)
+ cn,

(where cn is a centering constant) still satisfy that, conditional on (Zn,Wm) = (z?n,w
?
m),

these are independent and bounded by 2[log(1−a)−log a]. The same Hoeffding’s Inequality
then yields (29) with ψ?n(x) = ψ?(x) = x2µ2

min/[16{log(1− a)− log a}2].

Corollary 11. Under Assumption 1 on the unscaled parameter set ΠQL and Assumption 14
Theorem 1 and Corollaries 1 to 3 remain valid with the following modifications

1. c = µ2
mincmin/16;

2. L0 = a−1;

3. (c− 2L0‖π − π?‖∞) is replaced by ξn(c− 2L0‖π − π?‖∞).
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Remark 4. Assumption 6 is not in force in this theorem. Indeed, the scaling imposed
with ξn in Assumption 14 implies it: it forces log n/(nξ2

n) → 0 and log n/(mnξ
2
n) → 0 and

thus makes the speed at which mn/n can go to 0 depend on ξn. Note that mnξ
2
n plays in

Assumption 14 the same role as mn in Assumption 6.

Proof. The proof is essentially the same as the proof of Theorem 1. We will only highlight
the differences and show how the scaling log n/(mnξ

2
n)→ 0 is derived. First Equation (12)

from Proposition 1 now depends on n and should be

EZnWm
?

(
δπn(Zn,Wm, zn,wm)

)
≥ 2ξn(c′ − L0‖π − π?‖∞)(mr1 + nr2). (34)

where the original c = µ2
minκmin/16 has been changed to c′ = µ2

mincmin/16. Next the
set A(z?n,w

?
m, zn,wm) must be changed so that we consider two-sided deviations between

δπn(Zn,Wm, zn,wm) and its conditional expectation of order ξn(c′−L0‖π−π?‖∞)(mr1 +
nr2) instead of the previous (c−L0‖π−π?‖∞)(mr1 + nr2). Equation (22) therefore turns
to

P?(A(z?n,w
?
m, zn,wm) ∩ {(Zn,Wm) = (z?n,w

?
m)})

≤ 2 exp[−ψ?(ξn(c′ − 2L0η))(mr1 + nr2)]µ(z?n,w
?
m). (35)

The set Ω1 is still defined as in Equation (23) and on this set, Inequality (21) and (16) are
still statisfied. However the upper bound on P?(Ω1) is modified as follows

P?(Ω1) ≤ P?(Ω0)+2|S|
[
{1+exp[−mψ?(ξn(c′−2L0η))]}n{1+exp[−nψ?(ξn(c′−2L0η))]}m−1

]
.

Combining the latter with the control of the probability of Ω0 given in Proposition 1 and
the quadratic nature of ψ?, we obtain

εn,m := P?(Ω1) ≤ 2QL exp[−(n ∧m)µ2
min/2] + 2|S|dn,m exp(dn,m),

where dn,m = [n exp{−mξ2
nψ

?(c′ − 2L0η)} + m exp{−nξ2
nψ

?(c′ − 2L0η)}]. The condition
required to make the εn,m summable and conclude the proof is log n/(mξ2

n) → 0. This
condition holds under Assumption 14.

5.2 Weighted models with a vanishing density

We now consider the setup introduced in Section 4.8, except that we shall now assume that
the sparsity parameters πql,n := ξnπql may be arbitrarily close to zero (see Assumption 14).
Note that the parameters (γql)(q,l)∈Q×L remain fixed. Moreover, Assumptions 11 and 12
are assumed to hold.

In the next lemma, we provide the scaling of κmin(πn, γ), or more accurately a lower
bound thereof, and show that Assumption 13 is sufficient to guarantee the adequate scaling
of the Lipschitz condition.

Lemma 11. Fix two parameters πn = ξnπ and π′n = ξnπ
′ in the set ΠQL,n, where π,π′ ∈
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ΠQL. Under Assumptions 11 to 14, we have for all n and all (q, l), (q′, l′) ∈ Q× L

κmin,n := κmin(ξnπ
?,γ?) ≥ ξn(cmin(π?) + κmin(γ?)), (36)∣∣∣∣∣

∫
X

log
f(x;πql,n, γql)

f(x;π′ql,n, γ
′
ql)
f(x;πq′l′,n, γq′l′)dx

∣∣∣∣∣ ≤ ξn
(
‖π − π′‖∞

a
+ L̃0‖γ − γ′‖∞

)
, (37)

ψ?n(x) := ψ?(x) =
µ2

min

8

(
ψ̃?(

x

2
) ∧ x2

8{log(1− a)− log a}2

)
,

(38)

where

κmin := κmin(γ?) = min
{
D(γ?ql‖γ?q′l′); (q, l), (q′, l′) ∈ Q× L, γ?ql 6= γ?q′l′

}
> 0

cmin := cmin(π?) =

(
a

1− a

)2

×min

{
(π?ql − π?q′l′)2

π?ql
; (q, l), (q′, l′) ∈ Q× L, π?ql 6= π?q′l′

}
> 0.

Proof. For all π, π′, π′′ ∈ Π, γ, γ′, γ′′ ∈ Γ and ξ > 0, we have:∫
X

log
f(x; ξπ, γ)

f(x; ξπ′, γ′)
f(x; ξπ′′, γ′′)dx = ξπ′′ log

π

π′
+ (1− ξπ′′) log

1− π
1− π′

+ ξπ′′
∫
X

log
f̃(x; γ)

f̃(x; γ′)
f̃(x; γ′′)dx. (39)

When (π′′, γ′′) = (π, γ), Equation (39) turns to

D
(
(ξπ, γ)‖(ξπ′, γ′)

)
= D(ξπ‖ξπ′) + ξπD(γ‖γ′) ≥ ξ (π − π′)2

2π

(
a

1− a

)2

+ ξaD(γ‖γ′),

from which we can deduce Inequality (36).
For general (π′′, γ′′), Equation (39) combined with Inequality (32) and Assumption 13

gives ∣∣∣∣∫
X

log
f(x; ξπ, γ)

f(x; ξπ′, γ′)
f(x; ξπ′′, γ′′)dx

∣∣∣∣ ≤ ξ |π − π′|a
+ ξL̃0|γ − γ′|

from which we can deduce Inequality (37).
Finally, in this setup Lemma 9 is still valid and gives Equation (38)

Now, we introduce an assumption about the quadratic nature of the function ψ̃?max

introduced in Assumption 12.

Assumption 15. With the notation of Assumption 12, for all x > 0, there exists some
positive mx such that for all ξ ∈ (0,mx)

ψ̃?max(ξx) ≥ ξ2ψ̃?max(x).

Remark 5. Assumption 15 ensures that ψ?(ξx) defined in Equation (38) does not decrease
faster than ξ2 with ξ and that the condition log(n)/(mnξ

2
n) → 0 is the correct asymptotics

in Corollary 12. Note also that Assumption 15 holds for all distributions considered in
Section 4.
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Corollary 12. Under Assumption 1 on the unscaled parameter set ΠQL and Assump-
tions 11 to 15, Theorem 1 and Corollaries 1 to 3 remain valid with the following modifica-
tions

1. L0 = a−1 + L̃0;

2. c = µ2
min(cmin + aκmin)/16;

3. π is replaced by (ξnπ,γ);

4. (c− 2L0‖π − π?‖∞) is replaced by ξn(c− 2L0‖(π,γ)− (π?,γ?)‖∞).

Proof. This result is proved following the proof of Theorem 1, exactly in the same way as
we did for Corollary 11, with some changes in key quantities as listed in the corollary.
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A Technical proofs

Proof of Lemma 2. Let us recall that this proof is a generalization of the proof of (Propo-
sition B.5 in Celisse et al., 2011).

Since (z?n,w
?
m) ∈ Ũ0, for any q ∈ Q and any l ∈ L, the number of entries in z?n (resp.

in w?
m) which take value q (resp. l) is at least dnµmin/2e (resp. dmµmin/2e). Up to a

reordering of the vectors z?n and w?
m, we may assume that the first Qdnµmin/2e entries of

z?n and the first Ldmµmin/2e entries of w?
m are fixed, with

z?n = (1, 2, . . . , Q, 1, 2, . . . , Q, . . . , 1, 2, . . . , Q, z?Qdnµmin/2e+1, . . . , z
?
n),

w?
m = (1, 2, . . . , L, 1, 2, . . . , L, . . . , 1, 2, . . . , L, w?Ldmµmin/2e+1, . . . , w

?
m). (40)

Such ordering of the entries of (z?n,w
?
m) induces a specific ordering of the entries of (zn,wm).

For each k ∈ {1, . . . , dnµmin/2e} (resp. each j ∈ {1, . . . , dmµmin/2e}), we denote by sk (resp.
tj) the application from Q to Q (resp. from L to L) defined by

∀q ∈ Q, sk(z
?
(k−1)Q+q) = z(k−1)Q+q and ∀l ∈ L, tj(w

?
(j−1)L+l) = w(j−1)L+l.

In other words, we write zn and wm in the form

zn = (s1(1), s1(2), . . . , s1(Q), s2(1), . . . , s2(Q), . . . , sdnµmin/2e(1), . . . , sdnµmin/2e(Q),

zQdnµmin/2e+1, . . . , zn)

wm = (t1(1), t1(2), . . . , t1(L), t2(1), . . . , t2(L), . . . , tdmµmin/2e(1), . . . , tdmµmin/2e(L),

wLdmµmin/2e+1, . . . , wm). (41)

There are several possible orderings of z?n (resp. w?
m) in the form (40) and each one

induces a different ordering of zn (resp. wm) in the form (41). For example, for any
1 ≤ k, k′ ≤ dnµmin/2e and any q ∈ Q, we can exchange z?(k−1)Q+q and z?(k′−1)Q+q which are

both equal to q and this induces a permutation between sk(q) and sk′(q) in zn. (Similarly
for any 1 ≤ j, j′ ≤ dmµmin/2e and any l ∈ L, we can exchange tj(l) and tj′(l) in wm.)
Also, for any i > Qdnµmin/2e, z?i is equal to some q ∈ Q and can be exchanged with
z?(k−1)Q+q for any 1 ≤ k ≤ dnµmin/2e. This induces a permutation between sk(z

?
i ) and zi

in zn. (Similarly, we can exchange tj(w
?
i ) and wi in wm for any i > Ldmµmin/2e and any

1 ≤ j ≤ dmµmin/2e.) Note also that the orderings of z?n and w?
m are independent. As

already said, each sk (resp. tj) is a function from Q to Q (resp. from L to L). We can
therefore choose orderings of z?n and w?

m which minimize the number (ranging from 0 to
dnµmin/2e) of injective functions s as well as the number (ranging from 0 to dmµmin/2e) of
injective functions t.

For 1 ≤ k ≤ dnµmin/2e and 1 ≤ j ≤ dmµmin/2e, let

Bkj = |{(q, l) ∈ Q× L;π?ql 6= π?sk(q)tj(l)}|.

We have of course diff(zn,wm, z
?
n,w

?
m) ≥

∑dnµmin/2e
k=1

∑dmµmin/2e
j=1 Bkj .

The simplest case is obtained when for any (k, j), we have Bk,j ≥ 1 and then

diff(zn,wm, z
?
n,w

?
m) ≥

⌈nµmin

2

⌉
×
⌈mµmin

2

⌉
≥ µ2

min

8
(mr1 + nr2),

33



since both r1 ≤ n and r2 ≤ m. In this case, the proof is finished.
Otherwise, there is at least one (k, j) such that Bkj = 0. In this case, we start by proving

that at least one application among the sk′ and at least one application among the tj′ are
permutations. Indeed, consider some (k, j) with Bkj = 0. Assume that sk(q) = sk(q

′) for
some q 6= q′. Then for all l, we have π?ql = π?sk(q)tj(l) = π?sk(q′)tj(l) = π?q′l which contradicts

Assumption 1. The same holds if tj(l) = tj(l
′) for some l 6= l′. Therefore if Bkj = 0, both

sk and tj are injections and therefore permutations.
Now, we prove that all applications sk′ which are permutations are in fact equal. Indeed,

consider k′ 6= k such that sk′ and sk are injections. Assume there exists some q such
that sk(q) 6= sk′(q). Then exchanging sk(q) and sk′(q) in zn decreases the number of
injective applications si by 2, in contradiction with the minimality of the chosen ordering
of coordinates in z?n. Therefore, sk = sk′ . Thus all injective sk′ are equal to the same
permutation s ∈ SQ. Similarly, all injective tj′ are equal to the same permutation t ∈ SL.
Since one of these pairs of permutations (sk, tj) is associated to the event Bkj = 0, this
implies that (π?)s,t = π?. Note also that according to Assumption 2, we necessarily have
(s, t) ∈ S.

We now argue that as soon as there is at least one injective application sk (which is
thus equal to s), we must have zi = s(z?i ) for all i ≥ Qdnµmin/2e + 1. Otherwise, we
could decrease by one the total number of injective sk′ by permuting zi and s(z?i ), which
contradicts the minimality of the number of injections. In the same way, if there is at least
one injective application tj (thus equal to t), we have wi = t(w?i ) for any i ≥ Ldmµmin/2e+1.

Let d1 (resp. d2) be the number (possibly equal to 0) of non-injective sk (resp. tj). It
comes from the two previous points that we can in fact write

zn = (s1(1), . . . , s1(Q), . . . , sd1(1), . . . , sd1(Q), s(z?d1Q+1), . . . , s(z?n)),

wm = (t1(1), . . . , t1(L), . . . , td2(1), . . . , td2(L), t(w?d2L+1), . . . , t(w?m)),

where (s, t) ∈ S. Thus, we obtain that

r1 = d(zn, z
?
n) ≤ ‖zn − s(z?n)‖0 ≤ d1Q,

r2 = d(wm,w
?
m) ≤ ‖wm − t(w?

m)‖0 ≤ d2L.

Finally, for each (k, j) such that either sk or tj is non-injective, we have Bkj ≥ 1. Therefore

diff(zn,wm, z
?
n,w

?
m) ≥

dnµmin/2e∑
k=1

dmµmin/2e∑
j=1

Bkj

≥ d1dmµmin/2e+ d2dnµmin/2e − d1d2

≥ d1dmµmin/2e+ d2dnµmin/2e
2

≥ r1dmµmin/2e+ r2dnµmin/2e
2Q

≥ µ2
min

4
(mr1 + nr2),

where the last inequality comes from µmin ≤ 1/Q. This concludes the proof of the lemma.
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